两个人的电影免费视频_国产精品久久久久久久久成人_97视频在线观看播放_久久这里只有精品777_亚洲熟女少妇二三区_4438x8成人网亚洲av_内谢国产内射夫妻免费视频_人妻精品久久久久中国字幕

建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法與流程

文檔序號(hào):11107146閱讀:1679來源:國(guó)知局
建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法與制造工藝

本發(fā)明屬于生物組織參數(shù)檢測(cè)領(lǐng)域,具體涉及一種建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法。



背景技術(shù):

在利用近紅外光譜進(jìn)行血糖檢測(cè)的方法中,需通過采集到的被測(cè)部位的近紅外光譜,應(yīng)用主成分分析法以及化學(xué)計(jì)量學(xué)等手段,建立被測(cè)組織組分與光譜學(xué)特征的對(duì)應(yīng)關(guān)系,即數(shù)學(xué)模型,才能夠?qū)崿F(xiàn)對(duì)血糖的無創(chuàng)檢測(cè)。近紅外光譜分析常用的化學(xué)計(jì)量學(xué)方法為多元校正法,主要包括多元線性回歸、主成分回歸、偏最小二乘法等。

目前,運(yùn)用偏最小二乘法進(jìn)行近紅外光譜數(shù)學(xué)模型分析多運(yùn)用于農(nóng)林業(yè)領(lǐng)域,如中國(guó)專利201510176830.4公開了一種基于近紅外光譜的熱處理木材材色的數(shù)學(xué)模型及檢測(cè)方法,其建立了一種數(shù)學(xué)模型可以對(duì)熱處理木材的材色進(jìn)行在線檢測(cè),但該模型不能用于檢測(cè)生物組織葡萄糖濃度。

張洪艷在其博士論文《近紅外光譜技術(shù)在人體血糖無創(chuàng)檢測(cè)中的應(yīng)用研究》中提出了葡萄糖溶液的近紅外透射光譜的建模結(jié)果,該模型對(duì)于近紅外無創(chuàng)血糖透射式檢測(cè)有一定的指導(dǎo)意義。但目前透射式的檢測(cè)部位均為組織成分復(fù)雜的非優(yōu)良光學(xué)介質(zhì),如耳垂、手指或手掌等。因此,該文章中的透射式建模結(jié)果并不適合于人眼內(nèi)虹膜反射的近紅外光譜的檢測(cè)。針對(duì)眼內(nèi)房水近紅外光譜而建立的葡萄糖濃度預(yù)測(cè)數(shù)學(xué)模型還未見報(bào)道。



技術(shù)實(shí)現(xiàn)要素:

本發(fā)明的目的在于提供一種建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法,克服了現(xiàn)有方法無法完成人眼虹膜反射近紅外光譜葡萄糖含量預(yù)測(cè)的問題。

實(shí)現(xiàn)本發(fā)明目的的技術(shù)解決方案為:一種人眼房水中葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的建立,包括如下步驟:

步驟1:建立人造前房模型,將人造房水溶液注入人造前房模型,以填充了人造房水溶液的人造前房模型作為校正集。

步驟2:應(yīng)用近紅外光譜儀從校正集中采集人造前房模型中返回的包含人造房水溶液內(nèi)葡萄糖含量信息的近紅外光譜數(shù)據(jù)。

步驟3:對(duì)測(cè)得的近紅外光譜數(shù)據(jù)進(jìn)行預(yù)處理。

步驟4:對(duì)預(yù)處理后的近紅外光譜數(shù)據(jù)利用偏最小二乘法將人造房水溶液中實(shí)際葡萄糖含量與經(jīng)光譜預(yù)處理后的人造房水溶液的近紅外光譜數(shù)據(jù)相關(guān)聯(lián),運(yùn)用完全交互檢驗(yàn)驗(yàn)證法對(duì)所建模型的擬合及預(yù)測(cè)能力進(jìn)行評(píng)價(jià),從而建立起基于近紅外光譜信息的人眼中葡萄糖含量的預(yù)測(cè)數(shù)學(xué)模型。

所述步驟1中人造前房模型包括有機(jī)玻璃接觸鏡和石英平板,有機(jī)玻璃接觸鏡模仿角膜,石英平板模仿虹膜,在有機(jī)玻璃接觸鏡和石英平板間填充調(diào)配好的人造房水溶液。

為了使建立的人造前房模型準(zhǔn)確的反映真實(shí)的人眼情況,步驟1中的人造前方模型中接觸鏡和石英平板間填充的人造房水溶液體積為50~80μL,從石英平板的內(nèi)表面到接觸鏡的內(nèi)表面距離為3.00~3.35mm。步驟1中人造房水溶液以0.9%的生理鹽水為基底,并且保證其pH值與真實(shí)房水一樣均為8,保證各組分物質(zhì)濃度的協(xié)方差為0。

為了保證校準(zhǔn)集中葡萄糖濃度覆蓋較寬的范圍,步驟1中調(diào)配人造房水訓(xùn)練集葡萄糖濃度為1~30mmol/L,濃度間隔為1mmol/L。

步驟2所述的近紅外光譜條件為:測(cè)樣方式為反射,光譜掃描范圍為1500~1800nm,分別率為2nm,對(duì)樣品集中的每一個(gè)樣品重復(fù)掃描三次,取平均值作為樣品光譜。

步驟3中預(yù)處理包括噪聲濾除、歸一化處理、數(shù)據(jù)篩選、光譜范圍的優(yōu)化選擇、中心化及標(biāo)準(zhǔn)化處理,所述預(yù)處理選取的譜區(qū)范圍為1500~1800nm,17點(diǎn)平滑處理,4個(gè)主成分?jǐn)?shù)。

本發(fā)明與現(xiàn)有技術(shù)相比,其顯著優(yōu)點(diǎn):

(1)構(gòu)造人造前房模型,并利用化學(xué)編碼方法調(diào)配不同葡萄糖濃度的人造前房溶液,用以作為數(shù)學(xué)模型的校正集樣本,更加真實(shí)地模擬出了實(shí)際測(cè)試中的光束動(dòng)向,更加符合運(yùn)用該數(shù)學(xué)模型的實(shí)際檢測(cè)條件。

(2)運(yùn)用偏最小二乘法構(gòu)建預(yù)測(cè)的數(shù)學(xué)模型,利用完全交互檢驗(yàn)驗(yàn)證方法對(duì)模型的擬合和預(yù)測(cè)能力的評(píng)價(jià),極大程度地保證了本發(fā)明中數(shù)學(xué)模型的精度,為后續(xù)預(yù)測(cè)未知葡萄糖濃度的活體人眼房水近紅外光譜提供了精度保障。

(3)本發(fā)明提供的建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法,模型校正集濃度范圍廣,精度高,在房水葡萄糖濃度檢測(cè)過程中具有快速、 準(zhǔn)確和高效的特點(diǎn)。

附圖說明

圖1為本發(fā)明的建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法的流程圖。

圖2為本發(fā)明的建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法的人造前房模型圖。

具體實(shí)施方式

下面結(jié)合附圖對(duì)本發(fā)明作進(jìn)一步詳細(xì)描述。

結(jié)合圖1和圖2,一種建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法,包括如下步驟:

步驟1:建立人造前房模型,將人造房水溶液灌入人造前房模型,將填充了人造房水溶液的人造前房模型作為校正集。

所述步驟1中人造前房模型包括有機(jī)玻璃接觸鏡和石英平板,有機(jī)玻璃接觸鏡模仿角膜,石英平板模仿虹膜,在有機(jī)玻璃接觸鏡和石英平板間填充調(diào)配好的人造房水溶液。有機(jī)玻璃接觸鏡和石英平板間填充的人造房水溶液體積為50~80μL,從石英平板的內(nèi)表面到有機(jī)玻璃接觸鏡的內(nèi)表面距離為3.00~3.35mm。

其中人造房水溶液以0.9%的生理鹽水為基底,人造房水溶液的pH值為8,葡萄糖濃度為1~30mmol/L,濃度間隔為1mmol/L,各組分物質(zhì)濃度的協(xié)方差為0。

步驟2:應(yīng)用近紅外光譜儀從校正集中采集人造前房模型中返回的包含人造房水溶液內(nèi)葡萄糖含量信息的近紅外光譜數(shù)據(jù)。

近紅外光譜儀的采樣方式為反射,光譜掃描范圍為1500~1800nm,分辨率為2nm,對(duì)校正集中的每一個(gè)樣品重復(fù)掃描三次,取平均值作為樣品近紅外光譜。

步驟3:對(duì)測(cè)得的近紅外光譜數(shù)據(jù)進(jìn)行預(yù)處理,預(yù)處理包括噪聲濾除、歸一化處理、數(shù)據(jù)篩選、光譜范圍的優(yōu)化選擇、中心化及標(biāo)準(zhǔn)化處理,所述預(yù)處理選取的譜區(qū)范圍為1500~1800nm,17點(diǎn)平滑處理,4個(gè)主成分?jǐn)?shù)。

步驟4:對(duì)預(yù)處理后的光譜數(shù)據(jù)利用偏最小二乘法將人造房水溶液中實(shí)際葡萄糖含量與經(jīng)光譜預(yù)處理后的人造房水溶液的近紅外光譜數(shù)據(jù)相關(guān)聯(lián),并利用完全交互檢驗(yàn)驗(yàn)證方法對(duì)模型的擬合和預(yù)測(cè)能力的評(píng)價(jià),從而建立起基于近紅外光 譜信息的人眼中葡萄糖含量的預(yù)測(cè)數(shù)學(xué)模型。

偏最小二乘法能夠在自變量存在嚴(yán)重多重相關(guān)性的條件下進(jìn)行回歸建模,并且更易于辨識(shí)系統(tǒng)信號(hào)和噪聲。本發(fā)明中主要采用偏最小二乘法進(jìn)行人眼房水葡萄糖濃度校正模型的建立。采用偏最小二乘法進(jìn)行建模分析時(shí),其原理可分為兩步:矩陣分解和線性回歸。首先對(duì)光譜矩陣X和濃度矩陣Y進(jìn)行分解,即分解為得分矩陣和載荷矩陣的乘積,并加上一個(gè)殘差矩陣:

X=TP+E

Y=UQ+F

式中,T為X矩陣的得分矩陣,U為Y矩陣的得分矩陣,P為X矩陣的載荷矩陣,Q為Y矩陣的載荷矩陣,E為X矩陣的偏最小二乘擬合殘差矩陣,F(xiàn)為Y矩陣的偏最小二乘擬合殘差矩陣。

第二步是將T和U矩陣作線性回歸:

U=TB

B=(TTT)-1TTY

由此,我們便可構(gòu)建出運(yùn)用關(guān)聯(lián)矩陣B來實(shí)現(xiàn)光譜矩陣和濃度矩陣的關(guān)聯(lián)關(guān)系。在進(jìn)行未知濃度預(yù)測(cè)時(shí),首先根據(jù)其光譜矩陣X和載荷矩陣P求出未知樣品光譜矩陣X未知的得分矩陣T未知,然后根據(jù)上式得到濃度預(yù)測(cè)值:

Y未知=T未知BQ

因此,PLS建模方法在對(duì)光譜矩陣X進(jìn)行信息綜合時(shí),既考慮了最好地概括X的信息,其所提取的成分對(duì)濃度矩陣Y又有最好地解釋性。經(jīng)過信息篩選,自然排除了對(duì)Y矩陣沒有解釋作用的噪聲因素,同時(shí)也能克服多重相關(guān)性對(duì)建立數(shù)學(xué)模型的影響。

對(duì)模型的擬合和預(yù)測(cè)能力的評(píng)價(jià),本發(fā)明采用完全交互檢驗(yàn)驗(yàn)證的方法。即:人造房水樣本集中每次選取一個(gè)樣品,從樣本集中剔除該樣品的光譜數(shù)據(jù),使用剩余的樣品建立新的校正集數(shù)學(xué)模型,然后預(yù)測(cè)被剔除的樣品,得到該樣品的預(yù)測(cè)值,與參考值的差即為預(yù)測(cè)誤差。如此依次循環(huán)計(jì)算,直到人造房水樣品集中所有的樣本都被剔除一次且只被剔除一次,得到預(yù)測(cè)誤差,接著計(jì)算所有樣品的預(yù)測(cè)誤差的均方根,最終得到整個(gè)模型的預(yù)測(cè)精度。由于在上述計(jì)算過程中被預(yù)測(cè)的樣品沒有參加建立數(shù)學(xué)模型,因此該方法能夠客觀地估計(jì)模型的實(shí)際預(yù)測(cè)能力。

通常采用相關(guān)系數(shù)R、參與建模的校正集樣本的標(biāo)準(zhǔn)偏差(RMSEC)和不參與建模的預(yù)測(cè)樣本的標(biāo)準(zhǔn)偏差(RMSEP)作為評(píng)價(jià)數(shù)學(xué)模型質(zhì)量的主要指標(biāo),計(jì)算公式如下:

式中,通過校正數(shù)學(xué)模型預(yù)測(cè)得到的人造房水溶液葡萄糖含量值,yi為配制的人造房水溶液葡萄糖含量的真實(shí)值,nc為校正集的樣本個(gè)數(shù)、nP為預(yù)測(cè)集的樣本個(gè)數(shù)。RMSEC為校正數(shù)學(xué)模型對(duì)參與建模的人造房水樣本進(jìn)行預(yù)測(cè)所得到的均方根誤差;RMSEP為校正數(shù)學(xué)模型對(duì)預(yù)測(cè)樣本進(jìn)行預(yù)測(cè)所得到的均方根誤差,表示建立的數(shù)學(xué)模型用于預(yù)測(cè)時(shí),預(yù)測(cè)值與真實(shí)值的平均誤差。這兩組參數(shù)分別用來評(píng)價(jià)模型的擬合能力和預(yù)測(cè)能力。相關(guān)系數(shù)R越接近1,并且RMSEC值和RMSEP值越小,說明數(shù)學(xué)模型的預(yù)測(cè)精度越高。

實(shí)施例1

結(jié)合圖1和圖2,一種建立人眼房水葡萄糖含量近紅外光譜預(yù)測(cè)數(shù)學(xué)模型的方法,包括如下步驟:

步驟1:建立人造前房模型,將人造房水溶液灌入人造前房模型,將填充了人造房水溶液的人造前房模型作為校正集。

所述步驟1中人造前房模型包括有機(jī)玻璃接觸鏡和石英平板,有機(jī)玻璃接觸鏡模仿角膜,石英平板模仿虹膜,在有機(jī)玻璃接觸鏡和石英平板間填充調(diào)配好的人造房水溶液。有機(jī)玻璃接觸鏡和石英平板間填充的人造房水溶液體積為60μL,從石英平板的內(nèi)表面到有機(jī)玻璃接觸鏡的內(nèi)表面距離為3.13mm。

其中人造房水溶液以0.9%的生理鹽水為基底,人造房水溶液的pH值為8,葡萄糖濃度為1~30mmol/L,濃度間隔為1mmol/L,各組分物質(zhì)濃度的協(xié)方差為0。為了保證校準(zhǔn)集中葡萄糖濃度覆蓋較寬的范圍,各物質(zhì)的濃度如表1所示。

表1 人造房水溶液中各物質(zhì)濃度(mg/dL)

步驟2:應(yīng)用近紅外光譜儀從校正集中采集人造前房模型中返回的包含人造房水溶液內(nèi)葡萄糖含量信息的近紅外光譜數(shù)據(jù)。

近紅外光譜儀的采樣方式為反射,光譜掃描范圍為1500~1800nm,分辨率為2nm,對(duì)校正集中的每一個(gè)樣品重復(fù)掃描三次,取平均值作為樣品近紅外光譜。

步驟3:對(duì)測(cè)得的近紅外光譜數(shù)據(jù)進(jìn)行預(yù)處理,預(yù)處理包括噪聲濾除、歸一化處理、數(shù)據(jù)篩選、光譜范圍的優(yōu)化選擇、中心化及標(biāo)準(zhǔn)化處理,所述預(yù)處理選取的譜區(qū)范圍為1500~1800nm,17點(diǎn)平滑處理,4個(gè)主成分?jǐn)?shù)。

步驟4:對(duì)預(yù)處理后的光譜數(shù)據(jù)利用偏最小二乘法將人造房水溶液中實(shí)際葡萄糖含量與經(jīng)光譜預(yù)處理后的人造房水溶液的近紅外光譜數(shù)據(jù)相關(guān)聯(lián),并利用完全交互檢驗(yàn)驗(yàn)證方法對(duì)模型的擬合和預(yù)測(cè)能力的評(píng)價(jià),從而建立起基于近紅外光譜信息的人眼中葡萄糖含量的預(yù)測(cè)數(shù)學(xué)模型。

表2 偏最小二乘法建模結(jié)果

本發(fā)明應(yīng)用偏最小二乘法將已知的人造房水葡萄糖濃度結(jié)果與經(jīng)光譜預(yù)處理過的樣品近紅外光譜數(shù)據(jù)相關(guān)聯(lián)而建立起來的,并利用完全交互檢驗(yàn)驗(yàn)證的方法對(duì)對(duì)模型的擬合和預(yù)測(cè)能力進(jìn)行評(píng)價(jià)。表2給出了偏最小二乘法建模結(jié)果,其結(jié)果表明,在1500~1800nm波段范圍內(nèi),當(dāng)主成分?jǐn)?shù)為4時(shí),所建立的校正數(shù)學(xué)模型的校正集相關(guān)系數(shù)R為0.998842,校正集均方根誤差RMSEC為0.417216,交互驗(yàn)證集均方根RMSEP為1.011209,本發(fā)明可以滿足對(duì)未知葡萄糖濃度房水樣品進(jìn)行檢測(cè)的精度要求。

當(dāng)前第1頁(yè)1 2 3 
網(wǎng)友詢問留言 已有0條留言
  • 還沒有人留言評(píng)論。精彩留言會(huì)獲得點(diǎn)贊!
1
平江县| 家居| 衡东县| 宜君县| 河池市| 紫阳县| 阿巴嘎旗| 景东| 兖州市| 石河子市| 介休市| 武城县| 本溪市| 高青县| 台前县| 印江| 东丰县| 固始县| 奎屯市| 额济纳旗| 普宁市| 西林县| 威远县| 杨浦区| 务川| 秭归县| 泾源县| 乌兰察布市| 五大连池市| 镇沅| 勃利县| 曲阜市| 云安县| 四子王旗| 岱山县| 嘉鱼县| 崇明县| 正镶白旗| 满洲里市| 北碚区| 乌拉特后旗|