1.一種基于成分平均迭代算法的橋面多軸移動荷載的識別方法,其特征在于:
包括以下步驟:
1)、在橋梁底面對應(yīng)位置x1,x2,…xm處分別粘貼m個位移傳感器,測得橋面多軸移動車輛荷載fk(t)在x位置處t時刻的位移為v(x,t),k=1,2,3…,為車輛軸數(shù);
2)、建立車橋系統(tǒng)振動微分方程:取橋梁長度為L,抗彎剛度為EI,橋梁單位長度質(zhì)量為ρ,考慮粘性阻尼并取阻尼系數(shù)為C,忽略橋梁的剪切變形和轉(zhuǎn)動慣量,橋面多軸移動車輛荷載fk(t)以速度c自梁左端支承處向右移動,則車橋系統(tǒng)的振動微分方程為:
其中δ(x-ct)是狄拉克函數(shù);
方程(1)的邊界條件為:
v(0,t)=0,v(L,t)=0,
3)、對方程(1)求解;
4)、建立橋梁在k軸車輛荷載作用下,由位移響應(yīng)識別多軸移動荷載系統(tǒng)方程:
v(m×1)=S(m×k)·f(k×1) (2)
v(m×1)為移動荷載fk(t)在x1,x2,…xm處的實際位移,且m≥k;S(m×k)為已知的系統(tǒng)矩陣;f(k×1)為所求的k軸移動荷載;
式(2)的離散形式表示為:
其中
5)、采用成分平均迭代算法求得多軸移動荷載的精確值;
通過最小二乘法由方程(2)求得車輛多軸移動荷載的初始值f0,成分平均迭代算法第b+1步迭代表示為:
式中D為m行m列的單對角矩陣:
其中sj為系統(tǒng)矩陣S的第j列,aij為系統(tǒng)矩陣S中第i行第j列的數(shù)值;
采用成分平均迭代算法讓初始值不斷逼近車輛真實荷載,當(dāng)識別精度達到要求即可停止迭代,則最后一次迭代得到的車輛各軸荷載即為識別的車輛多軸荷載。
2.如權(quán)利要求1所述的基于成分平均迭代算法的橋面多軸移動荷載的識別方法,其特征在于:所述的步驟3)中對方程(1)求解的具體步驟如下所述:
基于模態(tài)疊加原理,假設(shè)橋梁的第n階模態(tài)振型函數(shù)為則方程(1)的解表示為:
矩陣形式為:
這里n為模態(tài)數(shù),qn(t)(n=1,2…∞)是第n階模態(tài)位移,將方程(12)代入方程(1),并在[0,L]內(nèi)對x進行積分,利用邊界條件和狄拉克函數(shù)特性,車橋系統(tǒng)振動微分方程用qn(t)表示為:
這里為qn(t)的二階導(dǎo)數(shù),、為qn(t)的一階導(dǎo)數(shù),分別為圓頻率、粘性阻尼比和橋面移動車輛荷載模態(tài)表達式;
如車輛共有k個車軸,且第k個車軸到第一個車軸的距離為則方程(14)寫為:
則對應(yīng)m個測點處的模態(tài)位移可通過方程(13)表示為:
橋梁上x1,x2,…xm處的速度通過位移的一次微分求得:
進一步,橋梁上x1,x2,…xm處的加速度通過位移的二次微分求得:
類似地,梁上x1,x2,…xm處的彎矩可利用關(guān)系式求得:
若f1,f2,…,fk為已知k軸車輛各軸對應(yīng)荷載,忽略阻尼的影響,則方程(1)的解可表示為:
其中